In a way, negative temperature is higher than the highest positive temperature. High positive temperatures just gives you a uniform distribution on all possible tokens, highly negative temperatures is the same behavior. As you reach the low-negatives, you place more and more weight on unlikely tokens.
This makes more intuitive sense if inverse temperature is the physically relevant quantity, since you then have a smooth change as you cross from positive inverse temperature into negative, with zero standing for a uniform distribution and high positive (resp. negative) inverse temperatures just placing more and more weight on likely (resp. unlikely) tokens.
This makes more intuitive sense if inverse temperature is the physically relevant quantity, since you then have a smooth change as you cross from positive inverse temperature into negative, with zero standing for a uniform distribution and high positive (resp. negative) inverse temperatures just placing more and more weight on likely (resp. unlikely) tokens.